A plant in the field is never fonefy

Genetic identity of neighbours matters

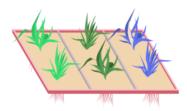
Who is in the neighbourhood?

Plants resist pathogens, obviously

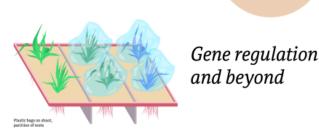
Plants eavesdrop

In a crop mixture, resistance to a pathogen changes before and after infection.

Around a crop plant in the field are


pollinators microbes worms pathogens neighbouring crop plants Plants switch up their basal immunity on infection to fight the pathogen.

/XXXXXXXXXXXXXX


/\$\z\$\z\$\z\$\z\$\z\$\

/\$\\$\$\\$\$\\$\$\\$\$ /\$\z\$\z\$\z\$\z\$\z\$\ The infected plant alerts the neigbours via compounds

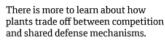
in the air by pollinators by fungal network via root contacts

Through soil, not air

Gene are regulated by neighbouring plants, before and after an infection, but this does not explain resistance

fully.

neighbour modulated susceptibility


Healthy plants in the neighbourhood talk to each other, bringing all plants

to a state of primed defense.

Based on

Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures

Pélissier et al. IEB, 2021 Artist: Dr. Ipsa Jain

Funded through an outreach grant to Ravindra Palavalli-Nettimi and Krishna Anujan

Disrupting exchanges via soil affects

pathogen resistance in a crop mixture.