

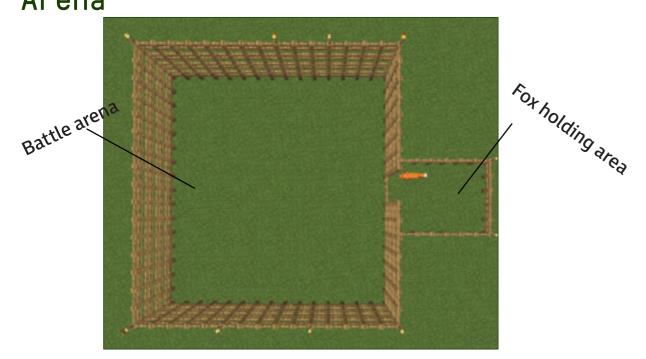
How Hungry are Foxes in Minecraft?

Have you ever rage-quit coming back from a mining trip to find a fox got into your farm and killed all your chickens? 🤗

This isn't just a Minecraft problem. Foxes 🦊 (Minecraft and IRL) are a predator, hunting chickens which are their prey (or target). All animals have their own predator-prey relationships which affect how many animals are in the habitat. So understanding these relationships are crucial for conservation scientists and ecologists (the scientists who study nature) to keep ecosystems balanced.

One of the tools to understand predator-prey relationships is called functional response. A functional response experiment assesses how quickly a predator can kill/ consume its prey.

This worksheet will talk you through an in-game functional response experiment to help us understand the ecosystems inside Minecraft. World downloads and a full quide are available here: https://www.sebiology.org/outreach/public-resources/ minecraft-foxes.html


This experiment has been tested on Minecraft: Java Edition version 1.21.10

This free educational resource is not an official Minecraft product/service and is not approved by or associated with Mojang or Microsoft.

Lab Prep: Building the Battle Arena

If you don't want to use the world download, you can set it up yourself:

- 1. Fire up a Superflat world in creative mode.
- 2. Fence off a 16 x 16 arena for the experiment, 4 blocks high to stop the fox cheating and jumping out
- 3. The 'Holding area': Build a small, 4x6 side room off the main arena. Use a fence gate to connect it. This is where the fox chills (or plots) before and after each round.
- 4. Use 1 fox spawn egg in the holding area (or catch a wild one

2

Your Minecraft inventory:

- Chicken spawn eggs
- Leads
- Fox spawn eggs
- Sword (for emergencies)

Your IRL inventory:

- Timer (kitchen timer, Minecraft redstone timer etc)
- Something to log the results

Each round:

- 1. Chicken drop .: Spawn your batch of chickens on random blocks around the arena. We're using a doubling pattern for the number of chickens provided: 0, 2, 4, 8, 16, 32, 64 (more if you're feeling ambitious!).
- Release the beast: Open the gate to let the fox in and start the timer.
 Battle time: Let the fox hunt the chickens for 2 minutes. (You can change the amount of time, as long as it is the same for each round)
- 4. Round End: Once the timer buzzes, use the lead to quickly drag the fox back into the holding cell. CLOSE THE GATE!
- 5. Data entry: Count and record (table below or your own method) the surviving chickens 🥸
- 6. Calculate: Figure out the kills (Chickens provided Chickens alive)
 7. Reset: Pick up all the feathers and raw chicken drops. Prepare for the next round with a new batch of chickens.

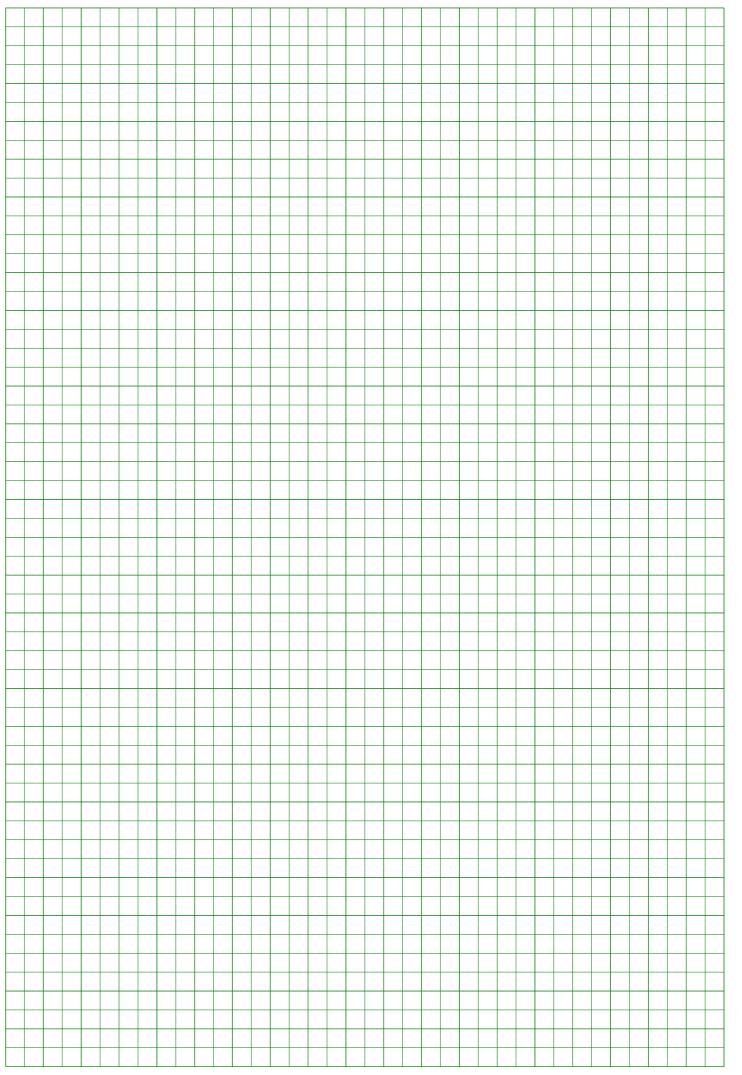
3

Round	Number of chickens provided	Number of survivors	Number of chickens killed (chickens provided – chickens alive)	Kill ratio (chickens killed / chickens provided)
0	0			
1	2			
2	4			
3	8			
4	16			
5	32			
6	64			

Your Results Graph

There's graph paper on the next page. You could also use the graphing function in a spreadsheet app, or (if you're good at coding) in Python.

- Horizontal (x) axis: number of chickens provided
- Vertical (y) axis: number of chickens killed Plot your data points and join them up.


You did a science!

What you just did is run a simulation. Specifically, you generated a functional response curve!

Scientists IRL use simulations and other types of computer models to understand things like population changes, disease spread, and climate change effects.

Go online and look up:

- · What functional responses can tell you about a predator?
- How do ecologists use functional responses to help with conservation?
- Why scientists sometimes use models rather than IRL experiments?

